

	CPhonak Stefan Launer, Speech in Noise Workshop, January 2011
Factors causing BF mismat	ch
The beamformer performance in our	current products can be limited
due to level and phase mismatch cau	used by the following factors:
time invariant	time variant
Microphone production mismatch	Microphone ageing
HI assembly	HI repairing
Clean W&W variability	W&W pollution
Customer individual head/pinna	Non-idealities of current adaptive
shape	level matching block
Device geometry:	Customer HI positioning variance
ITEs and microBTEs have	

User-Steered directionality

- Traditional beamforming systems focus only to the front
- Speech signals do not always come from the front and facing the speaker is not always possible
 - Car, restaurants, small groups
- ZoomControl, accessible through myPilot, allows Exélia wearers to select in which direction to focus hearing

CPhona	k Stefan Launer, Speech in Noise Workshop, January 2011 Page 46	
Auditory Scene Analysis / Hearing Instrument Processing		
Auditory Processing	Hearing Instrument Processing	
Bottom up / top down	Bottom up	
No delay constraint, no real-time processing Higher resolution signal analysis Much higher computational power => Stream segregation & source formation: works on several different time scales	Delay constraint , real-time processing comp. power constraint - limited signal analysis, spectro-temporal resolution	
No signal reconstruction! ⇒ Perceptual attenuation, focus attention, suppression of neuronal activity	Signal reconstruction & signal modification: amplification & attenuation / filtering -> "distortions"	
Channel: full information capacity	Channel with limited information capacity	
A priori knowledge, "situational knowledge" - other sensory modalities - "world knowledge", models of sources ⇔ fill in information	Retrospective analysis Dynamic aspects head / source movement	
Attention control: Target signal identification and tracking, switching back and forth between objects, overcoming salient sources	Target signal – assumption: in front	

