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Speech Intelligibility in Noise??? 
� Speech Intelligibility in Complex Listening Conditions!!

� Different types of interfering sources

� Different spatial arrangements of sources and interferers

� Dynamic…

� Room acoustics

� Reverberation

� Distance

©Phonak  Stefan Launer, Speech in Noise Workshop, January 2011 Page 4

Speech Intelligibility in Noise??? 
� Speech Intelligibility in Complex Listening Conditions!!

� Test methodology

� Speech tests: short sentences, words, phonemes
- target from front, static

� White noise… from the back

� Anechoic environment

� Lab / real life results

� Speech intelligibility

� Listening effort
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Killion 1997
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Physical structure of interfering signal has a strong impact 
on speech intelligibility

Introducing ....

� spectral dips:               SH 3 - 4 dB SRT        NH: 9 - 15 dB 

� temporal dips:             SH 1 - 2 dB SRT         NH: 6 - 7  dB

� combination of both:    SH 4 - 5 dB SRT        NH: 15 - 20 dB

� ... improves speech intelligbility a lot for normal-hearing subjects, 
much less so for hearing impaired subjects !

Peters, Moore and Baer 1998, JASA
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Speech Intelligibility in Multi-talker Environment

� Speech intelligibility as 
a function of interfering 
talkers

Fig. 2,
Bronhorst and Plomp, JASA 1992
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Spatial Release from Masking – Anechoic Chamber

Beutelmann & Brand, JASA 2006

NH HI

10 dB!
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Spatial Release from Masking - Office

� Spatial release reduced by
reverberation

Beutelmann & Brand, JASA 2006

NH

HI

4 dB!
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Spatial Release from Masking - Cafeteria

Beutelmann & Brand, JASA 2006

NH HI
6-7 dB!
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Speech intelligibility in reverberant environments
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How to mix a Speech in Noise Cocktail

Speech in 

noise cocktail 

directional microphones

noise 

canceling

Objectives for a hearing instrument:

� Speech intelligibility improvement!!!!

� Ease of listening, listening effort, listening comfort
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Noise Reduction Using a Single Microphone

� Single Microphone Noise-Cancellers: in principal estimate the noise 
and subtract it from the noisy signal. 

Adaptive Filter:
H = 1 - N* / (S + N)

Speech Detection

(S + N)

Noise Estimation

N*

(S + N) - N*  ≈ S

� Statistical estimation, amplitude 
modulation, noise detection in speech 
pauses

� Use a single information source to 
separate two signals
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Reverberation Canceller – Reduces the smearing effects 
by de-blurring the speech signal

Signal

Time

Time span of early 

reflections

Time span of disturbing reflections

EchoBlockEchoBlockEchoBlockEchoBlock

L
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Single Microphone Noise Reduction - Summary

� This technique performs well eliminating stationary noises like a fan 
or in a car, etc. 

� Reverberation: very reverberant rooms

� Speech like noises can’t be suppressed without degrading speech 
quality at the same time.

� ... ease of listening: improving listening comfort

� reduction of perceived noisiness 

� less annoyance 

� Improvement of speech intelligibility ???

� Sound quality is a trade off…
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Delay & Sum - Technique

� The acoustical signal is picked up at two 
different locations by the front and the back 
microphones

� The signal from the back is delayed 

� The signals from both microphones are 
summed

� Depending on delay - different directions 
are attenuated

f

b

d

Target direction

Delay
= d/c

+



9

©Phonak  Stefan Launer, Speech in Noise Workshop, January 2011 Page 17

Digital Adaptive Directional Microphones

� Adaptive: minimize 
output energy of the 
two microphones AD-

Converter

AD-
Converter

Back

Front

Spatial
Processor

α

The spatial weighting factor (a) is continuously ad apted, 
the Directivity Index hereby optimized .
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Digital Adaptive Directional Microphones

� Amplify sounds from front  

� Adaptively  attenuates strongest noise source
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Frequency Specific Beamforming
Directivity in each frequency band

©Phonak  Stefan Launer, Speech in Noise Workshop, January 2011 Page 20

Directional Microphones: Potential and Limitations

� Significant speech intelligibility benefit compared to omnidirectional 
systems in complex listening conditions

� from side & asymmetric

� diffuse

� moving noises

� reverberant environments & 
larger distances

� Lab results: 3-6 dB improvements
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Directional Microphones: Potential and Limitations

� Positioning on head

� Microphone mismatch, ageing etc

� More than two microphones

� Noise floor

� Narrow beam pattern 
acceptable?

� Size constraint: low frequency roll-
off

� Computational complexity

f

b

d

Target direction

Delay
= d/c

+
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Directivity Index for Different Products Styles and 
Placements

� BTE

0

5

D
I
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Factors causing BF mismatch

The beamformer performance in our current products can be limited

due to level and phase mismatch caused by the following factors:

time invariant time variant

Microphone production mismatch Microphone ageing

HI assembly HI repairing

Clean W&W variability W&W pollution

Customer individual head/pinna 
shape

Non-idealities of current adaptive 
level matching block

Device geometry: 

ITEs and microBTEs have 
unfavorable mic positions

Customer HI positioning variance
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Effects of Microphone/BF mismatch

� microphone phase deviation

� → rotated null direction

� microphone magnitude deviation

� → reduced suppression

target

blocking
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Binaural Directional Microphones

Maximum SNR improvement: 3 dB

Beamformer Beamformer

wireless 
transmission

∑ ⋅
i

ii Xw ∑ ⋅
i

ii Xw

Improving directivity by linear combination of mona ural directional microphone outputs 
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Test setup

� Subjects

� 20 adults

� Moderate - moderately-severe hearing loss

� Exélia Art and Ambra microP BTE

� Algorithms

� Excelia

� Ambra UltraZoom (monaural)

� Ambra StereoZoom (binaural)

� Test setup

� OLSA: speech intelligibility in noise

� Listening effort scaling

� Paired comparison
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Binaural Beamforming
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OLSA
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Paired Comparison  – Subjective Speech Intelligibility

Mit welchem Hörgerät verstehen Sie besser?
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Paired Comparison  – Subjective Listening Effort

Mit welchem Hörgerät verstehen Sie leichter?
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User-Steered directionality

� Traditional beamforming systems focus only 
to the front

� Speech signals do not always come from the 
front and facing the speaker is not always 
possible

� Car, restaurants, small groups

� ZoomControl, accessible through myPilot,
allows Exélia wearers to select in which 
direction to focus hearing
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Listen to the side: User-Steered directionality

� Uses four-microphone network of full bandwidth binaural instruments

� Broadband audio data transfer between devices focuses hearing in one 
specific direction, while suppressing all signals in other directions
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Subjective Evaluation – Listening Effort

 
Which setting needs the least listening effort to u nderstand well? (For 

first time and experienced user (n=9)) 
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Binaural noise reduction techniques

� Different types of algorithms

� Beam former: 
spatial information, timing difference

� Binaural Wiener Filter

� Blind source separation:
statistical information estimating 
room transfer function

� Auditory processing schemes
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BWF: Speech Intelligibility Weighted Gain
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BWF: Speech Intelligibility Weighted Gain
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Binaural Beam Forming / Noise Reduction

� No stereo output signal => loss of spatial sensation / localization

� Artificially re-introduce that by “split-directionality”

� Mixing in part of the original signal at the output

� Narrower beam width 

� How narrow should the beam be (head movement!)?

� Complex environments

� Dynamic -> target tracking, target identification

� Reverberation & distance

� Expected improvements: specific situation, no generic solution

� Single /few strong interfering source, frontal hemisphere

� Environments with little reverberation
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Technical constraints

� Delay over the link

� Clock jtter

� Noise floor, signal degradation

� Microphone calibration (amplitude and phase)
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Earlevel FM
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Modern FM Technology

� Dynamic Speech Extraction

� Automatic FM advantage: Adjusts the FM gain depending on the 
environmental noise level

� Surrounding Noise Compensation

� Voice Activity Detector

� Multi-talker networks: New team teaching concept using up to 10 
transmitters
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SNR at ear level for different technologies
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Auditory Scene Analysis / Hearing Instrument Processing

Hearing Instrument ProcessingAuditory Processing

Target signal – assumption: in front…Attention control: Target signal identification and 
tracking, switching back and forth between objects, 
overcoming salient sources

Retrospective analysis
Dynamic aspects head / source movement …

A priori knowledge , “situational knowledge”
- other sensory modalities
- “world knowledge”, models of sources � fill in 
information…

Channel with limited information capacityChannel: full information capacity

Signal reconstruction & signal modification: 
amplification & attenuation / filtering     -> 
“distortions”

No signal reconstruction!
⇒ Perceptual attenuation, focus attention, 
suppression of neuronal activity

Delay constraint , real-time processing
comp. power constraint
- limited signal analysis, spectro-temporal 
resolution

No delay constraint , no real-time processing
Higher resolution signal analysis
Much higher computational power
=> Stream segregation & source formation: works on 
several different time scales

Bottom upBottom up / top down
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Conclusion

� Hearing instruments offer several algorithms to improve speech 
intelligibility in complex listening environments

� Algorithms based mainly on

� Speech intelligibility in complex listening environments remains a 
huge challenge

� Reverberation and distance

� Dynamic target selection and tracking

� Technical limitations

� Realistic test setups and test procedures
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Questions

� Speech intelligibility: how much is top-down driven versus bottom-up 
processing?

� Speech intelligibility: how fast is it really??

� How much information do we infer at the end of a „sentence“?

� Which cues (pitch, temporal fine structure, location,….) are the 
essential ones, does it depend on situation?

� How does the auditory system pick the relevant one??

� How do we achieve „perceptual constancy“ – voices in real life 
always sounds the same, (almost) independent of environment?
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Thank you…!!!
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Binaural processing - audio delay

� Group delay:

� Is mainly determined by Radio bandwidth, ADC, CODEC, 
buffering (Error correction)

� Delay shall be deterministic and constant

� For binaural audio processing the link delay adds to the other signal 
processing delay ie. FFT block processing, ADC.

� Overall system delay should be less than 10 ms (Stone & Moore 2005, …)

� Audiosignals + control data:

� Some more delay for Gain control is acceptable (Hohmann 2009)
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Jitter – examples: 800 Hz pure tone
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Acoustic delay from head dimension: typ. 500 µs for ear distance
Normal hearing minimum audible angle: a few µs
Jitter should be smaller than 20 µs RMS

-> allows for binaural beamforming without significant localization errors


